6. Eye Colour

Ella 'Crazy Vixen' Blakely New Zealand

Presentation Contents:

- I. The Problem
- 2. History of Eye Colour
- 3. Mendelian Trait
- 4. Pedigree Chart
- 5. What Determines Your Eye Colour
- 6. Ancestry
- 7. Conclusion

The Problem:

"In certain human populations, genetics allows predicting inheritance of eye color among family members. In other populations of the present day World, nearly everyone has the same eye color. What information is it possible to determine about the eye colors in both distant and close ancestors, descendants, and relatives of one living person?"

Definitions:

- Populations
- Ancestor
- Descendant
- Relative

Population:

Inheritance:

Ancestors, Descendants and Relatives:

Ancestor

Descendant

Descendant

Descendant

Descendant

Descendant

All Relatives

- Origin of different eye colours
- Mendelian trait

Origin of different eye colours

Photo Credits: http://zaidshoufan.com/info/world/

Photo Credits: http://davidsbeenhere.com/2015/01/02/languages-balkans/

Origin of different eye colours

Shows blue eye mutation

Carries blue eye mutation

Carries blue eye mutation

Blue eye mutation

- B Brown eye allele
- b Blue eye allele
- BB Homozygous dominant
- Bb Heterozygous
- bb Homozygous recessive

- Melanin
- OCA2 and HERC2
- Scattering of light

Photo Credits:

www.istockphoto.com/nz/photo/brown-eyes-gm492061059-40461514

Photo Credits: www.allaboutvision.com/conditions/eyecolor-blue.htm

Photo Credits: weheartit.com/entry/119367510

OCA2 and HERC2

OCA2

Brown eye have up to 70% more melanin than other eye colours

Photo Credits: www.istockphoto.com/nz/photo/bro wn-eyes-gm492061059-40461514

Photo Credits: www.allaboutvision.com/conditions/ey color-blue.htm

Photo Credits: weheartit.com/entry/119367510

• HERC2

Photo Credits: www.allaboutvision.com/conditions/eyecolor-blue.htm

Photo Credits: www.istockphoto.com/nz/photo/bro wn-eyes-gm492061059-40461514

Photo Credits: weheartit.com/entry/119367510

• HERC2 SNPs

rs1800407	rs1408799		rs2733832	rs1003719	rs1003719	rs1847134	rs1393350	
GG	СС	СТ	TT	AG	AG	AC	GG	Greenish blue with darker blue ring on outside and yellowish green in the middle
GG	СТ	GG		GG	GG		GG	Hazel
СС	CC	GT	СТ	AA	AA	AA		
GG	СТ	СС	СТ	AG	AG	N/A	AA	Gray/green/blue with darker blue ring on outside and flecks of yellowish green in the middle.
CC	СС	N/A	TT	AA	AA	N/A	AG	Blue
GG	СТ		СТ	AG	AG		AA	Predominately blue, maybe blue-grey, with a very slight hazel tinge near iris aperature.
GG	СТ	GG	СТ	AG	AG	AA	GG	Grey outer ring, Yellow-green main color with blue-gray around the pupil
							-	
GG	тт	GT	СС	GG	GG	AA	GG	Light blue-gray

Scattering of light

Photo Credits: www.marveloptics.com/blog/mysteries-colored-eyes/

Brown eyes moderate melanin concentration in frontal iris epithelia

Grey eyes negligible melanin in frontal iris epithelia & coarse collagen structure in stroma causing Mie scattering

Blue eyes negligible melanin in frontal iris epithelia & fine collagen structure in stroma causing Rayleigh ('blue sky') scattering

Red eyes negligible melanin in frontal and back iris epithelia allows refraction of retina blood vessels (albinism)

Green eyes little melanin in frontal iris epithelia (=yellow) & fine collagen structure in stroma causing Rayleigh ('blue sky') scattering

Violet eyes negligible melanin in frontal and back iris epithelia allowing retina red & fine collagen structure in stroma causing Rayleigh ('blue sky') scattering

29

Using SNP's To Look At Ancestry

What are SNP's

Photo Credits: Marshall.edu

Using SNP's To Look At Ancestry

Genetic markers

Photo Credits: https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Geographically Looking Where People Are From

Certain populations with same/majority of the same eye colour

Country/Nation	Light Eyes	Blue Eyes	
1. Finland	89%	72%	
2. Sweden	88%	72%	
3. Norway	88%	72%	
• Sami	68%	50%	
4. Estonia	85%	69%	
5. Denmark	85%	69%	
6. Latvia	83%	66%	
7. Netherlands	76%	58%	
8. Germany	70%	53%	
9. Lithuania	78%	61%	
10. Scotland	80%	63%	
11. England	74%	55%	
12. Belarus	74%	55%	
13. Australia	73%	55%	
14. USA	69%	50%	
 Midwest 	72%	55%	
 West 	70%	50%	
 South 	71%	53%	
 Northeast 	61%	45%	
15. Ireland	82%	66%	

Conclusion:

"In certain human populations, genetics allows predicting inheritance of eye colour among family members. In other populations of the present day World, nearly everyone has the same eye colour. What information is it possible to determine about the eye colours in both distant and close ancestors, descendants, and relatives of one living person?"

Conclusion:

"In certain human populations, genetics allows predicting inheritance of eye colour among family members. In other populations of the present day World, nearly everyone has the same eye colour. What information is it possible to determine about the eye colours in both distant and close ancestors, descendants, and relatives of one living person?"

Conclusion:

"In certain human populations, genetics allows predicting inheritance of eye colour among family members. In other populations of the present day World, nearly everyone has the same eye colour. What information is it possible to determine about the eye colours in both distant and close ancestors, descendants, and relatives of one living person?"

Acknowledgements:

- Carmel Gillman
- Jackson Martin
- Murray Chisolm
- Kerry Parker
- The NZ IYNT team
- Family

References:

https://www.gbhealthwatch.com/Trait-Eye-Color.php

http://genetics.thetech.org/how-blue-eyed-parents-can-have-brown-eyed-children

https://ghr.nlm.nih.gov/primer/traits/eyecolor

https://www.biology-online.org/dictionary/Phenotype

https://www.nature.com/scitable/definition/haplotype-haplotypes-142

https://ghr.nlm.nih.gov/primer/genomicresearch/snp

https://www.news-medical.net/health/Genetics-of-Eye-Color.aspx

http://scienceblogs.com/geneticfuture/2009/03/10/predicting-eye-colour-in-embry/

https://www.nature.com/scitable/topicpage/inheritance-of-traits-by-offspring-follows-predictable-6524925

http://www.dailymail.co.uk/sciencetech/article-5728763/Scientists-unveil-tool-predict-color-eyes-hair-skin-using-DNA-alone.html

https://www.nature.com/scitable/topicpage/gene-expression-regulates-cell-differentiation-931 https://blogs.iu.edu/sciu/2017/10/10/digging-up-your-roots-how-dna-is-used-to-trace-your-ancestors/

https://www.ucl.ac.uk/mace-lab/debunking/understanding

http://sl.zetaboards.com/anthroscape/topic/4581457/1/

http://www.iflscience.com/health-and-medicine/how-eyes-get-their-color/http://genetics.thetech.org/how-blue-eyed-parents-can-have-brown-eyed-children